9 research outputs found

    Worst-Case Communication Overhead in a Many-Core based Shared-Memory Model

    Get PDF
    National audienceWith emerging many-core architectures, using on-chip shared memories is an interesting approach because it provides high bandwidth and high throughput data exchange. Such a feature is usually implemented as a multi-bus multi-banked memory. Since predicting timing behavior is key to efficient design and verification of embedded real-time systems, the question that arises is how to evaluate the access time for one memory access of a given task while others may concurrently access the same memory-bank at t the same time. In this paper, we give the answers for a subset of streaming applications modeled like CSDF Model of Computation and implemented in Kalray’s MPPA chip

    Ordonnancement hybride des applications flots de données sur des systèmes embarqués multi-coeurs

    Get PDF
    Les systèmes embarqués sont de plus en plus présents dans l'industrie comme dans la vie quotidienne. Une grande partie de ces systèmes comprend des applications effectuant du traitement intensif des données: elles utilisent de nombreux filtres numériques, où les opérations sur les données sont répétitives et ont un contrôle limité. Les graphes "flots de données", grâce à leur déterminisme fonctionnel inhérent, sont très répandus pour modéliser les systèmes embarqués connus sous le nom de "data-driven". L'ordonnancement statique et périodique des graphes flot de données a été largement étudié, surtout pour deux modèles particuliers: SDF et CSDF. Dans cette thèse, on s'intéresse plus particulièrement à l'ordonnancement périodique des graphes CSDF. Le problème consiste à identifier des séquences périodiques infinies d'actionnement des acteurs qui aboutissent à des exécutions complètes à buffers bornés. L'objectif est de pouvoir aborder ce problème sous des angles différents : maximisation de débit, minimisation de la latence et minimisation de la capacité des buffers. La plupart des travaux existants proposent des solutions pour l'optimisation du débit et négligent le problème d'optimisation de la latence et propose même dans certains cas des ordonnancements qui ont un impact négatif sur elle afin de conserver les propriétés de périodicité. On propose dans cette thèse un ordonnancement hybride, nommé Self-Timed Périodique (STP), qui peut conserver les propriétés d'un ordonnancement périodique et à la fois améliorer considérablement sa performance en terme de latence.One of the most important aspects of parallel computing is its close relation to the underlying hardware and programming models. In this PhD thesis, we take dataflow as the basic model of computation, as it fits the streaming application domain. Cyclo-Static Dataflow (CSDF) is particularly interesting because this variant is one of the most expressive dataflow models while still being analyzable at design time. Describing the system at higher levels of abstraction is not sufficient, e.g. dataflow have no direct means to optimize communication channels generally based on shared buffers. Therefore, we need to link the dataflow MoCs used for performance analysis of the programs, the real time task models used for timing analysis and the low-level model used to derive communication times. This thesis proposes a design flow that meets these challenges, while enabling features such as temporal isolation and taking into account other challenges such as predictability and ease of validation. To this end, we propose a new scheduling policy noted Self-Timed Periodic (STP), which is an execution model combining Self-Timed Scheduling (STS) with periodic scheduling. In STP scheduling, actors are no longer strictly periodic but self-timed assigned to periodic levels: the period of each actor under periodic scheduling is replaced by its worst-case execution time. Then, STP retains some of the performance and flexibility of self-timed schedule, in which execution times of actors need only be estimates, and at the same time makes use of the fact that with a periodic schedule we can derive a tight estimation of the required performance metrics

    Self-Timed Periodic Scheduling For Cyclo-Static DataFlow Model

    Get PDF
    International audienceReal-time and time-constrained applications programmed on many-core systems can suffer from unmet timing constraints even with correct-by-construction schedules. Such unexpected results are usually caused by unaccounted for delays due to resource sharing (e.g. the communication medium). In this paper we address the three main sources of unpredictable behaviors: First, we propose to use a deterministic Model of Computation (MoC), more specifically, the well-formed CSDF subset of process networks; Second, we propose a run-time management strategy of shared resources to avoid unpredictable timings; Third, we promote the use of a new scheduling policy, the so-said Self-Timed Periodic (STP) scheduling, to improve performance and decrease synchronization costs by taking into account resource sharing or resource constraints. This is a quantitative improvement above state-of-the-art scheduling policies which assumed fixed delays of inter-processor communication and did not take correctly into account subtle effects of synchronization

    Hybrid scheduling of streaming applications to account for interprocessor communication in embedded manycores

    No full text
    Les systèmes embarqués sont de plus en plus présents dans l'industrie comme dans la vie quotidienne. Une grande partie de ces systèmes comprend des applications effectuant du traitement intensif des données: elles utilisent de nombreux filtres numériques, où les opérations sur les données sont répétitives et ont un contrôle limité. Les graphes "flots de données", grâce à leur déterminisme fonctionnel inhérent, sont très répandus pour modéliser les systèmes embarqués connus sous le nom de "data-driven". L'ordonnancement statique et périodique des graphes flot de données a été largement étudié, surtout pour deux modèles particuliers: SDF et CSDF. Dans cette thèse, on s'intéresse plus particulièrement à l'ordonnancement périodique des graphes CSDF. Le problème consiste à identifier des séquences périodiques infinies d'actionnement des acteurs qui aboutissent à des exécutions complètes à buffers bornés. L'objectif est de pouvoir aborder ce problème sous des angles différents : maximisation de débit, minimisation de la latence et minimisation de la capacité des buffers. La plupart des travaux existants proposent des solutions pour l'optimisation du débit et négligent le problème d'optimisation de la latence et propose même dans certains cas des ordonnancements qui ont un impact négatif sur elle afin de conserver les propriétés de périodicité. On propose dans cette thèse un ordonnancement hybride, nommé Self-Timed Périodique (STP), qui peut conserver les propriétés d'un ordonnancement périodique et à la fois améliorer considérablement sa performance en terme de latence.One of the most important aspects of parallel computing is its close relation to the underlying hardware and programming models. In this PhD thesis, we take dataflow as the basic model of computation, as it fits the streaming application domain. Cyclo-Static Dataflow (CSDF) is particularly interesting because this variant is one of the most expressive dataflow models while still being analyzable at design time. Describing the system at higher levels of abstraction is not sufficient, e.g. dataflow have no direct means to optimize communication channels generally based on shared buffers. Therefore, we need to link the dataflow MoCs used for performance analysis of the programs, the real time task models used for timing analysis and the low-level model used to derive communication times. This thesis proposes a design flow that meets these challenges, while enabling features such as temporal isolation and taking into account other challenges such as predictability and ease of validation. To this end, we propose a new scheduling policy noted Self-Timed Periodic (STP), which is an execution model combining Self-Timed Scheduling (STS) with periodic scheduling. In STP scheduling, actors are no longer strictly periodic but self-timed assigned to periodic levels: the period of each actor under periodic scheduling is replaced by its worst-case execution time. Then, STP retains some of the performance and flexibility of self-timed schedule, in which execution times of actors need only be estimates, and at the same time makes use of the fact that with a periodic schedule we can derive a tight estimation of the required performance metrics

    Effect of gold nanoparticles on mice splenomegaly induced by schistosomiasis mansoni

    No full text
    Schistosomiasis is still one of the main parasitic diseases that affect human health in tropical regions. Whilst praziquantel (PZQ) is the main classic antischistosomal drug, the need for new drugs is still a must due to the low effectiveness of the drug on the schistosome young worms, and the evolving of PZQ resistant strains. Nanotechnology is one of the most important recent and current methods used to treat human diseases including parasitic ones. Therefore, the present study aimed to examine the curative role of gold nanoparticles (GNPs) on splenic tissue of mice infected with Schistosoma mansoni Sambon, 1907. High-resolution transmission electron microscopy was used for characterization of nanoparticles (NP). GNPs of 1 mg/kg mice body weight were inoculated into mice infected with S. mansoni. The parasite caused deteriorations in histological architecture of the spleen tissue, and splenomegaly. Additionally, the parasite induced a significant reduction in splenic tissue glutathione levels; however, the concentrations of nitric oxide and malondialdehyde were significantly increased. Treatment of mice with GNPs reduced the extent of histological impairment and oxidative stress in spleen tissue. Therefore, our results demonstrate the protective role of GNPs against splenic damage in mice infected with S. mansoni. Keywords: Gold nanoparticles, Schistosomiasis, Splenic damage, Histopathology, Oxidative stress, Mic
    corecore